Unicode, 数式, Ubuntu, 定理
その他
広く使われているUnicode規格を理解し, エンコーディングの手法, UTF-8, UTF-16, UTF-32, を理解して, 多言語の文字コードを扱えるようになることを目指します. 具体的に, UTF-8, UTF-16, UTF-32間の変換方法をC++で実装し, 手法はできるだけ速い方法を用います.
本稿では, C++でバージョンに左右されずに文字を扱うために, 以下の機能を持つライブラリを紹介します.
- 型依存しないUTF-8, UTF-16, UTF-32間の相互変換
- UTF-8, UTF-16文字(コードポイント)ごとのイテレート
- 標準イテレータを使ったイテレート
- 型依存しないイテレータの対応
広く使われているUnicode規格を理解し, エンコーディングの手法, UTF-8, UTF-16, UTF-32, を理解して, 多言語の文字コードを扱えるようになることを目指します. 具体的に, UTF-8, UTF-16, UTF-32間の変換方法をC++で実装し, 手法はできるだけ速い方法を用います.
本稿では, C++でバージョンに左右されずに文字を扱うために, 以下の機能を持つライブラリを紹介します.
- 型依存しないUTF-8, UTF-16, UTF-32間の相互変換
- UTF-8, UTF-16文字(コードポイント)ごとのイテレート
- 標準イテレータを使ったイテレート
- 型依存しないイテレータの対応
OPアンプ(オペアンプ)を使ったCR型矩形波(方形波)発振回路です. 抵抗の値で発振周波数が変化します. グランドと電源電圧間で発振し, マイコンなどのデジタルICに最適です.
公式リファレンスを参考しつつ, Ubuntu 上にNVIDIA GPU ドライバ, CUDA, cuDNNを入れて, tensorflow をGPUで動かす方法を, フローチャートで進めます.
線形代数にある線形写像, 基底の変換行列, 表現行列などを理解するとき, 今どこの座標系にいるのか, 基底は変わったのか, ここはベクトル空間かという悩みに会います.
本稿では, 変換行列や表現行列を図で理解することを目的にします. 行列の掛け算が点の移動であることを意識すると, 理解しやすくなります.
線形代数にある線形写像, 基底の変換行列, 表現行列などを理解するとき, 今どこの座標系にいるのか, 基底は変わったのか, ここはベクトル空間かという悩みに会います.
本稿では, 変換行列や表現行列を図で理解することを目的にします. 行列の掛け算が点の移動であることを意識すると, 理解しやすくなります.